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LIQUID CRYSTALS, 1989, VOL. 5, No. 2, 717-724 

Propagative patterns in the convection of a nematic liquid crystal 

by A. JOETS and R. RIBOTTA 
Laboratoire de Physique des Solides, Bat. 510, Universittt de Paris-Sud, 

91405 Orsay, France. 

We show here that the convective instability of a nematic liquid crystal subjected 
to an A.C. electric field (the conduction regime), is never stationary, contrary to 
the widely accepted picture. Indeed, we have found that the roll structure translates 
uniformly along the wavevector direction. In the low frequency part of the conduc- 
tion regime, the structure is rather homogeneous in space and travels at a very low 
velocity, while inside the high frequency part, the rolls are localized inside stable 
domains and the propagation velocity is higher by three orders of magnitude. 
Closer to the cut-off frequency, we have also found a novel time dependent state, 
where the amplitude of the rolls oscillates periodically in time. 

1. Introduction 
It is well known that a layer of nematic liquid crystal with negative dielectric 

anisotropy, in a planar geometry and subjected to an A.C. electric field bifurcates to 
a space periodic convective state when the voltage is increased above a well-defined 
threshold [l, 21. It was believed until very recently that the convective structure at 
onset (the so-called Williams domains) is stationary inside the whole conduction 
regime (f < f , ,  wheref, is the cut-off frequency) [2]. We show here, using an accurate 
technique, that inside the whole range of the conduction regime the structure at 
threshold is in fact travelling with a uniform velocity. There are two apparent regimes: 
a low frequency range, which has extensively been studied, inside which the structure 
is rather homogeneous in space and propagates with a low velocity, and a high 
frequency range, where the rolls propagate with a high velocity inside well localized, 
stable domains [3]. We also report on another novel effect (observed just belowf,) of 
an oscillation in time of the amplitude of the localized velocity field; this might be the 
first observation of a breather in convection. 

2. The experimental set-up 
The experimental set-up is the classical one for the study of electro-hydro-dynamical 

(E.H.D.) instabilities in a planar geometry. A layer of nematic liquid crystal (Merck 
Phase V) of negative dielectric anisotropy E ,  was sandwiched between two glass plates 
coated with semi-transparent electrodes. The alignment is made homogeneous in the 
plane of the plates: n is parallel to the x axis. An A.C. voltage is applied across the 
layer, so that the electric field is directed along the z-axis. The applied constraint is 
measured by the dimensionless parameter E = ( V 2  - Ki)/ y i ,  where yh is the voltage 
at threshold. The frequency,f, of the excitation is an additional parameter, which is 
kept fixed for each experiment. The thickness of the sample L, is typically 50 pm and 
the lateral dimensions are L, = 2.5cm and L, = 1-5cm, so that the aspect ratio in 
the wavevector direction is of order 500. The layer can thus be considered as infinitely 
wide, as compared to the scale of the most unstable modes (the wavelength A). The 
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718 A. Joets and R. Ribotta 

sample is enclosed in a container thermally regulated with a water bath; the tempera- 
ture is kept constant to within at least * 0.l0C around 21°C for more than five hours. 

Because of the coupling between the velocity gradients and the director orien- 
tation, any convective flow periodic in space induces a periodic modulation of the 
optic axis of the crystal. Transmitted light with extraordinary polarization is periodi- 
cally focused along lines in a horizontal plane parallel to the plates [4]. Small glass 
spheres (3-5 pm in diameter) are immersed in the layer to trace the streamlines of the 
convective flow, The focal lines correspond to the vertical (up and down) motion. 

The optical pattern in the focal plane was recorded through a CCD 512 x 512 
pixel camera and analysed by digital image processing. A line parallel to the x axis was 
selected at the same height inside the image and its profile is a measure of the 
transmitted intensity Z(x) along this line. Successive images were recorded periodically 
with a time interval 6t (typically 6t  = 0.3 s), and the lines were plotted one above the 
other [5 ] .  The resulting figure is a space-time diagram, where the intensity Z is 
represented as a function of the coordinate x and of the time t (see figure 1). 

The convective state develops above a well-defined threshold l & ( f ) .  For inter- 
mediate frequencies (f % f c /2) ,  the structure at onset is periodic in space with parallel 
rolls, aligned along they axis (i.e. normal rolls). The intensity profile Z(x) is a periodic 
succession of peaks separated by 1 = 2x/k,  the period of the convection (A = 2d, 
where d is the roll diameter; k is the wavevector). In the space-time diagram {Z, t } ,  the 
intensity peaks are aligned on straight lines the slope of which dtjdx = u p ' ,  where u 
is the translation velocity of the whole pattern along the x-axis. Peak lines parallel to 
the t-axis would indicate a purely stationary pattern. Such space-time diagrams can 
be recorded over long times (up to several hours) and are particularly convenient to 
characterize states which are slowly varying in time. The accuracy of the measure- 
ments is limited by the spatial resolution of the individual peaks and by the spatial 
homogeneity of the structure (absence of moving defects). In our experiments, we 
have been able to measure velocities u as low as lO&s z 1-5 x lo-' A/s in uniform 
motion over lo4 s. 

3. The non-stationarity of the rolls inside the conduction regime 
The eventual propagation velocity, u, is measured for different frequencies of the 

electric field spanning the whole conduction regime up to the cut-off. Figure 1 is a 
space-time diagram for the classical normal rolls obtained at intermediate frequencies 
(f = 300Hz) and for a sample thickness of 50pm. It shows clearly that the rolls 
propagate and u is found to be about 21s. At lower frequencies, below a triple 
(Lifshitz) pointf, (f, % 120Hz), the rolls at threshold are no longer normal to the 
y axis, but are tilted symmetrically (oblique rolls structure [6]). We find that this 
pattern travels also, with almost the same velocity. Increasing the frequency up tof,, 
we find that u increases sharply above some frequencyf, z 0*6f, (see figure 2). In this 
range of high frequencies, u has a typical value of about 0.5 A/s .  Here, the pattern loses 
its spatial homogeneity, and the rolls are localized inside small domains. These results 
clearly show that inside the whole conduction regime, the director distortion is not 
stationary and that the tilt angle $ between the director and the x axis is a slow, 
periodic function of time 

* = *,cos(kx - Ot)  

where R = ku. 
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Travelling waves in E.H.D. 719 
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Figure 1. Space-time diagram for the normal rolls (L, = 50pm,f = 300Hz, V = 10.5V, 
E = 0.1, i = 70pm). The peaks correspond to the upward motion between two rolls. 
They are aligned along oblique straight lines, from the slope of which the small constant 
propagation velocity u = 6.5 x pm/s = 0.9 x A/s can be measured. 

Figure 2. Propagation velocity u at  threshold versus the frequencyf(0, L, = 5 pm; 0, L, = 
10pm). The conduction regime is divided into two parts. I, the low frequency range 
where the structure is quasi-homogeneous and travels a t  low velocity; 11, the high 
frequency range, where the structure is localized in space and travels with a higher 
velocity. For these values of L, (L,  < 20pm), the velocity u increases with decreasing 
frequencies close to  D.C. 

We have measured the propagation velocity u for different samples of thickness 
ranging from 5 to 250 pm. In this range the pattern of rolls is always found to travel 
with a finite drift velocity, in apparent contradiction to the behaviour reported in [7]. 
The velocity at a given reduced frequency fifc increases as the thickness decreases. 
Moreover, for small thicknesses Lz < 20 pm and low frequencies, it is also found that 
u increases up to 0.5A/s for frequencies decreasing to D.C. (see figure 2). Simul- 
taneously, the convective structure is here too, not fully homogeneous in space, but 
propagates inside domains of large lateral extension (the typical dimensions 1, and 1, 
of the domains are of order 50-100d). 
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4. The localized travelling roll structure 
The frequency is fixed at some value inside the high frequency part of the 

conduction regime:f x 0.Sfc = 600Hz (heref, z 750Hz). The voltage is increased 
smoothly from zero up to a threshold, F,, , of 15 V. The pattern at threshold appears 
inhomogeneous in space and consists of isolated domains of elliptical-like shape, 
inside which a periodic structure of rolls aligned along y translates uniformly in the 
x direction (see figure 3). The typical value of the propagation velocity u is about 
10pm/s. Very close to the threshold ( E  = 0.1), the lateral dimensions of a domain are 
typically I, = 3d and 1, = 4d. These domains are randomly spread in the plane of the 
layer, and no deformation of the director alignment is detected in the space between 
them. They remain stable in space, thus indicating a nearly zero group velocity. In this 
travelling wave structure, the convective variables behave like A ( x )  cos (kx - at). It 
is found that, for a typical domain, the amplitude A ( x )  has a lump shape which can 
be fitted fairly well to a sech2(x/lx) function, which is typical of a soliton-like profile 
[3]. Space-time diagrams are plotted for increasing values of the voltage and u is 
found to be finite at threshold, while the amplitude of the instability measured by the 
transmitted light intensity increases continuously from zero. Simultaneously, the 
domains increase their extension in both directions, so that they get closer to each 
other and connect completely as the constraint parameter, E, tends to 1. These connec- 
tion boundaries reveal new and particularly interesting problems. They correspond 
to topological defects of the non-linear travelling waves [8] which represent the 
propagating rolls. When a connecting boundary between two domains of opposite 
velocity is along the rolls axis, either a source or a sink state is obtained when the 
waves leave or meet at the boundary, respectively. Sources or sinks may also occur 
spontaneously inside a single domain. For E > 1, the velocity u falls rapidly to zero 
and a quasistationary, homogeneous state is recovered. The velocity measured at 
threshold decreases sharply and continuously as the frequency is decreased down to 
some value,f, (heref, = 530Hz), where the slow propagation regime of intermediate 
frequencies is met. Then the velocity falls by two orders of magnitude over a range 
Af x 10-20 Hz. Simultaneously, the size of the domains diverges and the normal rolls 

I > 
0 100 200 300 

x /pm 
Figure 3. Space time diagram for the localized travelling structure. The rolls are travelling to 

the right with a velocity u = 5.8pm/s. (L,  = 50pm,f = 600 Hz, V = 15.9V, E = 0.3). 
The domain contains five wavelengths A. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
1
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Travelling waves in E.H.D. 721 

are recovered. The propagation of the pattern means that the director field is 
propagating along the x axis. The velocity field v is then expected to propagate in the 
same way. However, this does not imply that the fluid particles have an average 
velocity equal to u. The real flow structure can be characterized from the space-time 
representation by tracing the trajectories of individual particles immersed in the 
nematic material. The experimental procedure consists in recording the profile of a 
line which includes a particle at every time. Provided that the ratio v,/v, inside a roll 
is small, a particle can easily be automatically followed by the digital processor. The 
lagrangian trajectory in the x-t space is obtained therefore. Two types of trajectories 
are found inside the propagating structure [5 ] .  In the first one, which we call the closed 
flow, the particles have an average velocity 5, equal to u. Their motion is composed 
of a rotation around the rolls axis and a uniform translation with velocity u. The 
closed flow is an ensemble of closed cells propagating with velocity u. In the second 
type of trajectories, the open flow, the particles translate mainly in the opposite 
direction to that of the travelling wave, along an open curve, between the closed cells. 
The total flow is then decomposed into two components. Figure 4 shows a sketch of 
the flow structure in the comoving frame of the travelling rolls. The precise topology 
of this complex time-dependent velocity field can be well described using a simple 
kinematic model [9]. Between the rolls domains, where the director alignment is not 
distorted, the particles have a very small constant velocity ( z  0.5 pm/s) in the plane 
of the layer. More recently, from experimental observations of global mass transport 
in propagative convection of a binary mixture, other authors have deduced similar 
flow structures and compared them to an identical model [lo]. We believe that only 
the knowledge of the individual trajectories can correctly verify this model. 

open flow homoclinic orbit 

. .  .. ....... . . ....... . 

heteroclinic orbit closed cell 

Figure 4. Representation of the flow structure in the comoving frame of travelling rolls 
(v, = - a</&, v2 = ailax, where < = To sin (kx - at)). The closed flow is bounded by 
homoclinic orbits connected by heteroclinic ones at the stagnation points S. 

The one dimensional theoretical model [l I]  which was developed soon after the 
discovery of these E.H.D. instabilities, as well as the two or three dimensional 
extensions [12] are unable to account for travelling rolls. We now give some obser- 
vations which should be taken into account to improve the model. At high frequencies, 
the characteristic times z and z, [13] associated, respectively, to the relaxation of the 
charges and of the director orientation are comparable. (Here z = 4 x s, 
z, z 25 x s, for f = 600Hz and L, = 50pm). The curvature is then less 
efficient in stabilizing the spatial charge modulation against any possible lateral drift. 
Indeed, for a slight lateral drift of the charge distribution and within each half-period 
of the electric field, the curvature will adapt immediately to the new distribution, and 
the overall pattern can move uniformly as a progressive wave, in the direction of the 
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722 A. Joets and R. Ribotta 

director, along with a charge-density wave. In the model, such an effect might be 
included by allowing a D.C. large scale component of the density current to be 
superimposed onto the actual space-periodic distribution. Secondly, the initial model 
assumes that the time-dependence of the force can be averaged out. Such an assump- 
tion, which implies that the curvature is stationary in time, is less valid near the 
cut-off frequency. We may then suggest that, when the relaxation time for the 
curvature becomes comparable to the period of the electric field, the coupling 
between the curvature and the large scale drift motion of the charges is more efficient. 
Obviously this occurs close to D.C., but also close to the cut-off where the large value 
of the voltage reduces the curvature time to values close to the period. The decrease 
of the drift velocity at intermediate frequencies would be due to the pinning effect by 
a more efficient focusing of the charges at the rate of the driving field. The thickness 
dependence of the drift velocity may be ascribed to the E-field dependent drift by a 
Coulomb force, while the instability threshold is a voltage threshold. Hence the drift 
is larger for thinner samples. 

The spatial inhomogeneity cannot be understood at the present time with the 
results at hand, especially at low frequencies. The same experiments were also 
performed with Mylar sheets (5  pm) thick, covering the electrodes and led to similar 
observations. Charge injection by the plate is probably unimportant. A purely 
phenomenological mechanism can be suggested for the strong localization effect 
observed at high frequencies, which is based on an analogy of these travelling rolls 
with non-linear surface waves (i.e. Stokes waves) [14]. It is possible that in the range 
of frequencies where localization takes place, the dispersive effects in the phase 
dynamics, as well as the non-linearities, become important even very close to the 
onset. Then, when the voltage reaches the threshold, the fastest disturbance which 
grows out of the rest state is not defined by a unique wavevector k,  but rather by a 
broad band Ak centred on a value close to the critical one k, .  In real space, this 
corresponds to a space modulation of the amplitude of the convective state. Such a 
modulational instability can develop under some conditions (i.e. the Benjamin-Feir 
criterion [l S]), and the tendency to localization may be reinforced by the non-linearities 
(i.e. self-focusing). This type of solution, although not yet fully demonstrated, could 
arise, as was first suggested by Newel1 [ 16, 171, from a complex Landau-Ginzburg 
equation. This equation, which is known to govern a large class of pattern forming 
systems, is: 

aA a2 A 
at ax2 
_ -  - aA + y ~ - PJAI'A, 

where A is the complex envelope of the rolls and 

u = Re(EAexp[i(kx - at)] 

The real coefficient a is the linear growth rate of the unstable mode. The two other 
coefficients are complex. The real part bf y is a measure of the growth rate of sideband 
modes relatively to a; its imaginary part measures the wave dispersion. The real part 
of j measures the saturation of the unstable mode and its imaginary part couples the 
wave frequency to the amplitude A. 

4. The breather-like structure 
For frequencies f closer to the cut-off frequency fc ( f  2 0*9fc), a new time 

dependence may appear at threshold, under conditions which are yet not well defined. 
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Travelling waves in E.H.D. 123 

The amplitude of the localized propagative structure is now oscillating simultaneously 
in time. The convective variables behave as B( t )A(x )  sin (kx - Qt) ,  where the ampli- 
tude B(t) is a periodic function of time as in the case of breathers [ 181. The breathing 
period T is found to be typically of order 10 s. This state is more easily observed as 
a transient when a small step of voltage is applied just above threshold. In that case, 
the breathing amplitude can reach the zero value periodically. The space-time diagram 
corresponding to the breather-like state is shown on figure 5.  Usually, it is found that 
the domains breath in phase over large areas which include up to ten domains. The 
origin of this new time-dependent state is not yet understood, although it might be 
compared to the localized time dependent state studied by Bretherton and Spiegel in 
the case of thermohaline convection [19]. Note, however, that in their model the 
domains are uncorrelated in time. 

0 100 200 
300 x/pm 

Figure 5. Space-time diagram for the breather-like structure (L, = 50pm, f = 700Hz, 
V = 25 V, E = 0.1). The envelope of the rolls passes periodically through zero. 

5. Conclusion 
We have demonstrated experimentally using an accurate technique that, inside the 

conduction regime, the rest state bifurcates to convective states which are time 
dependent, contrary to the widely accepted picture. In addition to propagating, these 
states are heterogeneous in space, except in the range of intermediate frequencies. 
Another new time dependent state has also been observed in the form of an oscillation 
in time of the amplitude. These results indicate that electroconvection in a nematic 
layer is more complex than previously believed (and even experimentally found). We 
suggest that the essential features of these effects can be described, as in the case of 
surface waves on shallow water, by the evolution of the amplitude of non-linear waves 
that in fact could be derived from a typical model such as a complex time-dependent 
Landau-Ginzburg equation. 

References 
[l] WILLIAMS, R., 1963, J. chem. Phys., 39, 384. 
[2] ORSAY LIQUID CRYSTAL GROUP 1970, Phys. Rev. Lett., 25, 1642. 
[ 3 ]  JOETS, A., and RIBOTTA, R., 1988, Phys. Rev. Lett., 60, 2164. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
1
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



724 A. Joets and R. Ribotta 

[4] DE GENNES, P.-G., 1974, The Physics of Liquid Crystals (Clarendon Press). 
[5] JOETS, A,, and RIBOTTA, R., 1988, Propagation in Systems Far from Equilibrium, edited by 

J. E. Wesfreid, H. R. Brand, P. Manneville, G. Albinet and N. Boccara (Springer Series 
in Synergetics, Vol. 40) p. 176. 

[6] RIROTTA, R., JOETS, A., and LIN LEI, 1986, Phys. Rev. Lett., 56, 1595. 
[7] REHBERG, I., STEINBERG, V., ZIMMERMANN, W., and KRAMER, L., 1988, Twetfth ~ ~ ~ ~ e r ~ ~ u ~ j o ~ z a l  

[8] COULLET, P., ELI'HICK, C., GIL, L., and LEGA, J., 1987, Phys. Rev.  let^., 59, 884. 
[9] JOETS, A., and RIBOTTA, R. (to be published). A similar model has been proposed indepen- 

dently by LINZ, S. J., LUCKE, M., MULLER, H. W., and NIEDERLANDER, J., 1988, Phys. 
Rev. A, 38, 5727. 

Liquid Crystal Conference, Freiburg, August. 

[lo] MOSES, E., and STEINBERG, V., 1988, Phys. Rev. Lett., 60, 2030. 
[I I ]  HELFRICH, W., 1969, J .  chem. Phys., 51,4092. DUBOIS-VIOLETTE, E., DE GENNES, P.-G., and 

PARODI, O., 1971, J.  Phys., Paris, 32, 305. 
[I21 GOOSENS, W. J. A., 1978, Advances in Liquid Crystals, Vol. 3, edited by G. H. Brown 

(Academic Press) p. 1 .  BODENSCHATZ, E., ZIMMERMANN, W., and KRAMER, L., 1988, J .  
Phys., Paris, 49, 1875. 

[I31 The times are defined as z = Ell/47COil, where c,, and oII are the components of the dielectric 
constant and the conductivity along the director; 7;' = ~ - ' [ ( - E , E ~  /4ncl1)E2 + K3?k2],  
where E is the electric field, K,, the elastic constant for bend, k the wavevcctor, E, and 
E~ are respectively the dielectric anisotropy and the dielectric component normal to the 
director, and q is a bend viscosity. 

[I41 BENJAMIN, T. B., and FEIR, J. E., 1967, J .  Fluid Mech., 27, 417. 
[I51 STUART, J. T., and DIPRIMA, R. C., 1978, Proc. R .  Soc. A, 362, 27. 
[I61 NEWELL, A. C., 1979, Pattern Formation and Pattern Recognition, edited by H. Haken 

(Springer) p. 244. 
[17] NEWELL, A. C., 1978, Solitons in Condensed Matter Physics, edited by A. R. Bishop and 

T. Schneider (Springer Series in Solid State Science, Vol. 8) p. 52. 
[I81 MACLAUGHLIN, D. W., and SCOTT, A. C., 1978, Phys, Rev. A, 18, 1652. 
[I91 BRETHERTON, C. S., and SPIEGEL, E. A,, 1983, Physics Lett. A, 96, 152. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
1
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1


